
CFGS DAM 2.2 Process management in Java - ProcessBuilder and Process | Process and Service Programming

IES Doctor Balmis 1 / 9

2.2 Process management in Java - ProcessBuilder and Process

PSP class notes (https://psp2dam.github.io/psp_sources) by Vicente Martínez is licensed under

CC BY-NC-SA 4.0 (http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1)

https://psp2dam.github.io/psp_sources
http://creativecommons.org/licenses/by-nc-sa/4.0/?ref=chooser-v1

CFGS DAM 2.2 Process management in Java - ProcessBuilder and Process | Process and Service Programming

IES Doctor Balmis 2 / 9

2.2 Process management in Java ProcessBuilder and Process
2.2.1 Preparation and setting of a process

Setting the command at runtime
Additional settings for a process

2.2.2 Process control from parent
2.2.3 Spawn a java application from a class into the same project
2.2.4 Current Java Process Information

Getting information about the current process
Getting information about a child process from parent

2.2.1 Preparation and setting of a process

The class to set the running attributes for a new process, before it is being run, is the ProcessBuilder class.

Specification java.lang.ProcessBuilder
(https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html)

This is an auxiliary class for the Process and is instantiated to manage a collection of process attributes. We can invoke the
start method to create a new process with the attributes defined by the instance of the ProcessBuilder class.

Repeated calls to the start method would create a new process with the same attributes.

The ProcessBuilder class defines two constructors, such as:

The meaning implied by the parameters passed to both constructors is same. In the first constructor, the command to be
executed, along with command line arguments, is passed in a list of strings. And, in the second constructor, the command and
the command line arguments are specified through the varargs parameter. We can use either of the constructors, depending
upon the way to pass the parameter.

Arguments vs Parameters

If we want to launch a command with parameters, the command cannot be sent to ProcessBuilder in raw mode, it must
be processed and converted into a List in order to make it work.

ProcessBuilder(List<String> command)

ProcessBuilder(String... command)

// Different modes to pass the command to ProcessBuilder constructors

// 1st mode: using a string. It fails with parameters,
// Only works with commands having arguments

String command1 = "notepad.exe prueba1.txt"
ProcessBuilder pb = new ProcessBuilder(command1);

// 2nd mode: using an array of strings. It also works with parameters

String[] command2 = {"cmd", "/c", "dir", "/o"};
ProcessBuilder pb = new ProcessBuilder(command2);

// 3rd mode: using a string and splitting it to convert into a List

String command3 = "c:/windows/system32/shutdown -s -t 0";
// Regular expresion \s means splitting the string by blank spaces

java

java
1
2

3
4

5
6

7
8

9
10

11
12

13

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/ProcessBuilder.html

CFGS DAM 2.2 Process management in Java - ProcessBuilder and Process | Process and Service Programming

IES Doctor Balmis 3 / 9

Setting the command at runtime

If we want to set the command to be run at runtime, or at the time the ProcessBuilder instance is created we still don't know the
command, it can be set later by using the command(String).

The same way as the constructors, we have two versions of command method

and there's also another command method, without parameters, to retrieve the command and parameters already set for the
ProcessBuilder instance. Once we have the parameters list, we can modify it using List methods.

OS shutdown

You can use shutdown -s command to shutdown system. For windows OS, you need to provide full path of shutdown
command e.g. C:\Windows\System32\shutdown.

Here you can use -s switch to shutdown system, -r switch to restart system, -h to put the system into hibernation, and -t
switch to specify time delay.

Windows shutdown reference (https://docs.microsoft.com/en-us/windows-server/administration/windows-
commands/shutdown)

Activity psp.activities.U2A1_Shutdowner

Create a new Java application project (package psp.activities & main class U2A1_Shutdowner) Using the command line,
ask the user for the action he wants to do with the computer (shutdown ,restart or suspend) and how much time he
needs before shutting down the system.

Find information about the shutdown command in GNU/Linux and make your app work in both systems.

Your app has to prepare the right command for the answers the user has given and for the OS it is running on.

Get the ProcessBuilder.command() result and show it on the console in a readable format.

ProcessBuilder pb = new ProcessBuilder(command3.split("\\s"));

 command(List<String> command)

 command(String... command)

// Sets and modifies the command after ProcessBuilder object is created

String command = "java -jar install.jar -install"; // tmp dir is missing
ProcessBuilder pbuilder = new ProcessBuilder(command.split("\\s"));

if (isWindows) {
 pbuilder.command().add(0, "cmd"); // Sets the 1st element

 pbuilder.command().add(1, "/c"); // Sets the 2nd element
 pbuilder.command().add("c:/temp"); // Sets the last element

 // Command to run cmd /c java -jar install.jar -install c:/temp
} else {

 pbuilder.command().add(0, "sh"); // Sets the 1st element
 pbuilder.command().add(1, "-c"); // Sets the 2nd element

 pbuilder.command().add("/tmp"); // Sets the last element
 // Command to run: sh -c java -jar install.jar -install /tmp

}

14

java

java
1

2
3

4
5

6
7

8
9

10
11

12
13

14

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/shutdown

CFGS DAM 2.2 Process management in Java - ProcessBuilder and Process | Process and Service Programming

IES Doctor Balmis 4 / 9

Additional settings for a process

Some of the settings that can be changed for a process are:

Set the working directory where the process will be run We can override the default working directory of the current process
by calling the directory method and passing a File object. By default, the current working directory is set to the value
returned by the user.dir system property.

Set-up a custom key-value map and modify an existing one using builder.environment()

Redirect input and output streams to custom replacements

Inherit both of them to the streams of the current JVM process using builder.inheritIO()

This two settings will be covered later in this unit.

Environment variables vs System properties

With Runtime we also accessed System properties, that are different from this environment ones.

Activity psp.activities.U2A2_WorkingDirectory

Create a new Java application project (package psp.activities & main class U2A2_WorkingDirectory) Prepare a process to
run the dir/ls command to check that the directory listing is for the directory pointed by the user.dir property. In the
same application, change the value for the user.dir property. Finally, set a working directory for the process.

Print the user.dir environment value for the three scenarios after being changed.

// Starts the process
pbuilder.start();

// Change working directory for the running process
pbuilder.directory(new File(System.getProperty("user.home")));

// Retrieve and modify the process environment

Map<String, String> environment = pbuilder.environment();
// Get the PATH environment variable and add a new directory

String systemPath = environment.get("path") + ";c:/users/public";
environment.replace("path", systemPath);

// Add a new environment variable and use it as a part of the command
environment.put("GREETING", "Hola Mundo");

processBuilder.command("/bin/bash", "-c", "echo $GREETING");

15

16
17

java
1

2

java
1
2

3
4

5
6

7
8

CFGS DAM 2.2 Process management in Java - ProcessBuilder and Process | Process and Service Programming

IES Doctor Balmis 5 / 9

2.2.2 Process control from parent

The Process is an abstract class defined in the java.lang package that encapsulates the runtime information of a program in

execution. The start method invoked by the ProcessBuilder class returns a reference to this class instance. There is an another
way to create an instance of this class, through the exec method of the Runtime instance.

The methods defined by the Process class can be used to perform input/output operations from the process, check the exit
status of the process, wait for it to complete, and terminate the process. These methods, however, are not built to work on
special processes of the native platform like daemon processes, shell scripts, and so on.

Specification java.lang.Process (https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html)

Some of the common methods defined in this class are:

method Description

int exitValue() Exit code returned from the process executed

Boolean isAlive() Checks if the invoking process is still running.

int waitFor() Parent process waits for the child process to end. The integer value returned by the
method is the exit code by the process.

Boolean waitFor(long timeOut,
TimeUnit unit)

Overloaded method of previous one. We can specify the wait time. This method returns
true if the process has terminated and false if timeout has occurred.

void destroy() These two methods are used to kill or terminate the process. One, the second, just does
it forcibly.

Process destroyForcibly()

Let’s write a simple Java program to open an application as a separate process. After it is opened, the program would wait for,
say, 10 seconds and then destroy the process, which will immediately close the application.

Input/ output from the child process

Intriguingly, the process created by the start() method does not own a console. Instead, it redirects (stdin, stdout,
stderr) to the parent process. If need be, we can access them via streams obtained using methods defined in the class,
such as getInputStream(), getOutputStream() and getErrorSteam(). These are the ways we can feed input to and get
results from the sub processes.

public class ProcessDemo {

 public static void main(String[] args) throws Exception {

 ProcessBuilder pb = new ProcessBuilder("C:/Program Files (x86)/Notepad++/notepad++.exe");
 // Effectively launch the process

 Process p = pb.start();
 // Check is process is alive or not

 boolean alive = p.isAlive();
 // Wait for the process to end for 10 seconds.

 if (p.waitFor(10, TimeUnit.SECONDS)) {
 System.out.println("Process has finished");

 } else {
 System.out.println("Timeout. Process hasn't finished");

java
1

2
3

4
5

6
7

8
9

10
11

12
13

14

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Process.html

CFGS DAM 2.2 Process management in Java - ProcessBuilder and Process | Process and Service Programming

IES Doctor Balmis 6 / 9

Exit codes

An exit code, or sometimes known as a return code, is the code returned to a parent process by an executable. The
standard exit code is 0 for success and any number from 1 to 255 for anything else.

Activity psp.activities.U2A3_ExitValue

Create a new Java application project (package psp.activities & main class U2A3_ExitValue) Prepare a process to run
different commands (notepad, calc, shell commands) one after each other, and make your application get their exit code.
Print it.

Commands can be hardcoded. As an optional improvement for this activity you can ask the user for the command and
make your app interactive. There must be an option to exit the app (empty command for instance).

Try with non-existing applications or using wrong arguments/parameters for commands.

Can you force a process not to be successful?

How can you know your own process exit code?

Exceptions management

Call to method waitFor implies that the parent process gets locked until child process ends, or until a signal from the
system (Exception) is received.

It's better to handle exceptions than to throw them to upper levels.

 }

 // Force process termination.
 p.destroy();

 // Check again if process remains alive
 alive = p.isAlive();

 // Get the process exit value
 int status = p.exitValue();

 }
}

15

16
17

18
19

20
21

22
23

CFGS DAM 2.2 Process management in Java - ProcessBuilder and Process | Process and Service Programming

IES Doctor Balmis 7 / 9

2.2.3 Spawn a java application from a class into the same project

For some activities you'll be required to create the parent and the child processes as Java applications. Then, from one the classes
you will need to launch the other one.

This implies that both classes are gonna have a main method. So, in the project properties we'll need to set which is the main
class that will be run first, usually the Launcher class (parent process).

Before one class can run the other, at least the second one (child process) must be compiled, that is, the .class file has to be
generated into the build/classes directory.

CFGS DAM 2.2 Process management in Java - ProcessBuilder and Process | Process and Service Programming

IES Doctor Balmis 8 / 9

Them and only then we can set the process environment to spawn a new process from an existing class. Here is the sample code

Activity psp.activities.U2A4_Launcher

Create a new Java application project (package psp.activities & main class U2A4_Launcher).

Into the project create another class, U2A4_Commander with a main method that receives a program name as a unique
parameter in the main. Make this application to create and run a process for the program and wait until that process has
finished.

This class will return always the same value the launched program did.

System.exit() method

Zero. The zero status code should be used when the program execution went fine, i.e., the program is terminated
successfully.
Non-Zero. A nonzero status code indicates abnormal termination. Java allows us to use different values for different
kinds of errors.

Now, make the U2A4_Launcher class ask the user for an application name and launch the Commander class passing it the
name of the application entered by the user.

Get the exitValue from Commander and show it's value, telling if the process worked fine or if it failed.

Child classes programming

Every class must be coded to be run independently or just as a child process. Think that in Netbeans all classes are run as
child classes from the IDE.

That's why the code, child or parent, needs to be done without thinking how they are gonna be called. The code must be
independent just like processes are one from each other.

// Prepare the environment and the command
ProcessBuilder pb = new ProcessBuilder("java", "psp.u2.actividad10.Sumador");

pb.directory(new File("build/classes"));
Process p = pb.start();

java
1

2
3

4

CFGS DAM 2.2 Process management in Java - ProcessBuilder and Process | Process and Service Programming

IES Doctor Balmis 9 / 9

2.2.4 Current Java Process Information

We can now obtain a lot of information about the process via the API java.lang.ProcessHandle.Info API:

the command used to start the process
the arguments of the command
time instant when the process was started
total time spent by it and the user who created it

Getting information about the current process

Here's how we can do that for the current process:

Getting information about a child process from parent

It is also possible to get the process information of a newly spawned process. In this case, after we spawn the process and get an
instance of the java.lang.Process , we invoke the toHandle() method on it to get an instance of java.lang.ProcessHandle.

The rest of the details remain the same as in the section above

// Get information about the current process

ProcessHandle processHandle = ProcessHandle.current();
ProcessHandle.Info processInfo = processHandle.info();

System.out.println("PID: " + processHandle.pid());

System.out.println("Arguments: " + processInfo.arguments());
System.out.println("Command: " + processInfo.command());

System.out.println("Instant: " + processInfo.startInstant());
System.out.println("Total CPU duration: " + processInfo.totalCpuDuration());

System.out.println("User: " + processInfo.user());

// Get information about a child process from parent
Process process = processBuilder.inheritIO().start();

ProcessHandle childProcessHandle = process.toHandle();
ProcessHandle.Info childProcessInfo = childProcessHandle.info();

java
1
2

3
4

5
6

7
8

9
10

java
1

2
3

4

	2.2 Process management in Java - ProcessBuilder and Process
	

	2.2 Process management in Java ProcessBuilder and Process
	2.2.1 Preparation and setting of a process
	Setting the command at runtime
	Additional settings for a process

	2.2.2 Process control from parent
	2.2.3 Spawn a java application from a class into the same project
	2.2.4 Current Java Process Information
	Getting information about the current process
	Getting information about a child process from parent

